Asset Pricing Theory

Asset Pricing. Homework 5 Solution.

1. CARA-Normal utility and the CAPM

Assume a standard one-period setup with n risky securities with corresponding (n,1) vector of prices P (at date 0) and (n,1) vector of payoffs X (paid at date 1) which are jointly normally distributed with mean μ and a diagonal covariance matrix Σ (only diagonal elements are different from zero $\Sigma_{ii} = \sigma_i^2$). Suppose also there is a risk-free security that pays 1 a.s. at date one and has a price $1/R_f$ (at date 0). Assume there exists K agents who maximize their negative exponential utility $\mathbb{E}[-\exp(-\gamma_k c_k)]$ $k = 1, \ldots K$ given some initial endowment of wealth W_k .

Each security i is in a supply of s_i .

1. Derive the optimal consumption and portfolio holdings of the investors.

We have

$$W_k = (W_k - \sum_i \pi_i(k)P_i) + \sum_i \pi_i(k)P_i$$

whereas

$$c_k = R_f(W_k - \sum_i \pi_i(k)P_i) + \sum_i \pi_i(k)X_i = R_fW_k + \pi_i^{\top}(X - R_fP)$$

and the expected utility is

$$E[-e^{-\gamma_k c_k}] = -e^{-\gamma_k R_f W_k} E[e^{-\gamma_k \pi'(X - R_f P)}]$$

whereas

$$E[e^{-\gamma_k \pi'(X - R_f P)}] = e^{-\gamma_k \pi'(\mu - R_f P) + 0.5\gamma_k^2 \pi' \Sigma \pi}$$

Thus, the optimal portfolio solves

$$\max_{\pi} \{ \pi'(\mu - R_f P) - 0.5 \gamma_k \pi' \Sigma \pi \}$$

and hence

$$\pi = \gamma_k^{-1} \Sigma^{-1} (\mu - R_f P)$$

2. Derive the equilibrium price vector *P* assuming that there is one unit of each of the risky securities outstanding.

Market clearing implies

$$\sum_{k} \gamma_k^{-1} \Sigma^{-1} (\mu - R_f P) = s$$

where $s = (s_i)_{i=1}^n$ is the vector of supply. Hence,

$$\sum_{k} \gamma_k^{-1} (\mu - R_f P) = \Sigma s$$

and

$$R_f P = \mu - \bar{\gamma} \Sigma s = \mu - \gamma \mathbb{C}\text{ov}(X, s'X) \tag{1}$$

where $X_M = s'X$ is the payoff of the market portfolio and

$$\bar{\gamma} = (\sum_{k} \gamma_k^{-1})^{-1}.$$

Now, returns are given by $R = X/P = diag(P)^{-1}X$ whereas the covariance matrix of returns is $\Sigma_R = diag(P)^{-1}\Sigma diag(P)^{-1}$. At the same time, the price and return of the market are

$$P_M = s'P, R_M = X_M/P_M$$

Our goal is to show that

$$E[R_i - R_f] = \beta_i E[R_M - R_f]$$

or, equivalently,

$$E[R - R_f] = E[R_M - R_f] \frac{\operatorname{Cov}(R, R_M)}{\operatorname{Var}[R_M]}$$

We have

$$\mathbb{C}\text{ov}(R_i, R_M) = \mathbb{C}\text{ov}(P_i^{-1}X_i, P_M^{-1}X_M) = P_i^{-1}P_M^{-1}\mathbb{C}\text{ov}(X_i, X_M)$$

and therefore, in vector form,

$$Cov(R, R_M) = P_M^{-1} diag(P)^{-1} \Sigma s$$

And hence the desired identity takes the form

$$E[R - R_f] = E[R_M - R_f] \frac{\mathbb{C}ov(R, R_M)}{\mathbb{V}ar[R_M]} = \kappa \operatorname{diag}(P)^{-1}\Sigma s$$

where we have defined

$$\kappa = \frac{E[R_M - R_f]}{\mathbb{V}\mathrm{ar}[R_M]} P_M^{-1}.$$

Substituting

$$E[R - R_f] = \text{diag}(P)^{-1}E[X - R_f P] = \text{diag}(P)^{-1}(\mu - R_f P),$$

we get

$$diag(P)^{-1}(\mu - R_f P) = \kappa diag(P)^{-1} \Sigma s,$$

which is equivalent to

$$\mu - R_f P = \kappa \Sigma s$$

when we multiply by diag(P). Thus, to complete the proof, it remains to show that $\kappa = \bar{\gamma}$. We have

$$\frac{E[R_M - R_f]}{\mathbb{V}\text{ar}[R_M]} = \frac{P_M^{-1}E[X_M - R_f P_M]}{P_M^{-1}\mathbb{V}\text{ar}[X_M]} = P_M \frac{E[X_M - R_f P_M]}{\mathbb{V}\text{ar}[X_M]}$$

Furthermore, taking at inner product of (1) with s, we get

$$R_f s' P = s' \mu - s' \bar{\gamma} \Sigma s \tag{2}$$

We notice that

$$s'\Sigma s = \operatorname{\mathbb{V}ar}[s'X] = \operatorname{\mathbb{V}ar}[X_M],$$

and hence (2) is equivalent to

$$\bar{\gamma} \mathbb{V} \operatorname{ar}[X_M] = s' \mu - R_f s' P = E[X_M] - R_f$$

and hence, we get the desired expression for κ .

3. Show that the CAPM holds in this economy, i.e., that if we define $R_i = X_i/P_i \ i = 1, \dots n$ we have

$$\mathbb{E}[R_i] = R_f + \beta_i (\mathbb{E}[R_M] - R_f)$$

where R_M is the return on the market portfolio, which invests a fraction $\omega_i = \frac{P_i}{\sum_{i=1}^n P_i}$ in each security (i.e., in relation to its relative market capitalization).

- 4. Identify the market risk-premium $\mathbb{E}[R_M] R_f$ and Sharpe ratio $\frac{E[R_M] R_f}{\sigma_M}$ in terms of the primitives of the model (and in particular in terms of R_f), $\bar{\gamma} = (\sum_k \gamma_k^{-1})^{-1}$, $\hat{\mu} = \sum_i \mu_i$, and $\hat{\sigma}^2 = \sum_i \sigma_i^2$.
- 5. Show that there exists a pricing kernel that is linear in the sum of the aggregate dividend, i.e., $M = a b \sum_{i=1}^{n} X_i$ where you have to determine a, b, such that $E[MR_i] = 1 \,\forall i$.
- 6. Note that this state price density can take on negative values. Does this imply that there are arbitrage opportunities in this economy? Explain.
- 7. Are markets complete?
- 8. Is the equilibrium allocation Pareto optimal?
- 9. what happens when each agent k has his own view on (μ_k, Σ_k) ?

2. The CAPM: Empirical evidence

Read Fama-French (JEP 2004): The Capital Asset Pricing Model: Theory and Evidence (posted on Moodle).

- 1. Explain figure 2 page 33 in FF2004. What does it represent? What does this figure imply for the CAPM?
- 2. Explain figure 3 page 43 in FF2004. What does it represent? What does this figure imply for the mean-variance efficiency of the market portfolio?

3. Mean-variance portfolio choice and leverage constraints.

Consider an economy with N=2 risky assets R_1, R_2 and one risk-free asset R_0 . The expected return vector is $\mu=[0.09;0.12]$ and standard deviation $\sigma=[0.15;0.25]$. The correlation between the two returns is 0.2. There is a risk-free rate $R_0=0.05$. We want to solve the problem of a mean-variance investor who faces leverage constraints and cannot borrow more than 20% of her wealth. The investor seeks the portfolio R_P such that $\max E[R_P] - \frac{a}{2}V[R_p]$ subject to $w'\mathbf{1} \leq m$ where m=1.2 and w is the vector of weights invested in the risky assets.

- 1. Solve the optimal portfolio problem of an unconstrained investor (with $m = \infty$). Show that her optimal portfolio consists of investing in the so-called 'tangency' portfolio (the mean-variance optimal portfolio that holds only risky assets) and the risk-free asset. Determine the tangency portfolio w_t , its mean, variance, and Sharpe ratio. Show that the relative weight put on the tangency portfolio versus the risk-free asset depends on the risk aversion of the investor.
- 2. Determine the zero beta portfolio w_z , which is mean-variance efficient and has zero correlation with the tangency portfolio. Compute its mean, variance, and Sharpe ratio.
- 3. Show that for an investor with a leverage constraint, her optimal portfolio consists of a combination of the risky-asset-only tangency portfolio, the zero-beta portfolio, and the risk-free rate. This implies that we can restrict the optimal portfolio choice problem to portfolios with returns of the form $R_P = R_0 + x_t(R_t R_0) + x_z(R_z R_0)$. Setup the Lagrangian of the constrained agent's problem, derive the first-order condition and compute the optimal portfolio in terms of x_t, x_z , the holdings of tangency and zero-beta portfolio. Then, also give the portfolio composition in terms of the underlying securities w_0, w_1, w_2 .
- 4. Prove that there exists a risk-aversion level a^* so that if $a > a^*$, then the agent is unconstrained and does not hold the zero-beta portfolio. Instead, if $a < a^*$ then the agent will also invest in the zero-beta portfolio.
- 5. Plot the Sharpe ratio on the optimal portfolio as a function of the risk-aversion level. What happens to the Sharpe ratio of the optimal portfolio as a falls below a^* ? Interpret the findings.

We have

$$w_0 = 1 - w_1 - w_2 \tag{3}$$

(the weight in the risk-free asset) and the agent is maximizing

$$\max w'\hat{\mu} - 0.5aw'\Sigma w, \ \hat{\mu} = \mu - R_0, \tag{4}$$

where

$$\Sigma = \operatorname{diag}(\sigma) \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \operatorname{diag}(\sigma) \tag{5}$$

The solution is

$$w_{Markowitz} = a^{-1} \Sigma^{-1} \hat{\mu} \tag{6}$$

when the agent is unconstrained.

A tangency portfolio can be defined in two ways. One way is to fix a risk aversion and solve

$$\max w' \mu - 0.5aw' \Sigma w, \ w' 1 = 1$$
 (7)

which gives first-order conditions

$$\hat{\mu} - a\Sigma w - \lambda 1 = 0 \tag{8}$$

so that the tangency portfolio is

$$w_t = a^{-1} \Sigma^{-1} (\hat{\mu} - \lambda_t 1) \tag{9}$$

and the budget constraint w'1 = 1 implies

$$1 = a^{-1} 1' \Sigma^{-1} (\hat{\mu} - \lambda_t 1) \tag{10}$$

Solving for λ_t , we get

$$\lambda_t = \frac{a^{-1}1'\Sigma^{-1}\hat{\mu} - 1}{a^{-1}1'\Sigma^{-1}1} \tag{11}$$

Another way is to fix the target expected return

$$\mu_p = w'\mu$$

and minimize the variance

$$\min w' \Sigma w, \ w' 1 = 1, \ \mu_p = w' \mu.$$

This will give us two Lagrange multipliers

$$\Sigma w = \lambda_1 1 + \lambda_2 \mu.$$

Thus,

$$w_t = \Sigma^{-1}(\lambda_1 1 + \lambda_2 \mu).$$

Defining "effective risk aversion" $a = \lambda_2^{-1}$ and $\lambda_t = -\lambda_1/\lambda_2$, we see that this portfolio is identical to that derived above. Thus, we can parametrize tangency portfolios either by a or by μ_p .

Consider now a mean-variance optimizing agent. When the agent is constrained, he is solving

$$\max w'\mu - 0.5aw'\Sigma w - \lambda(w'1 - m) \tag{12}$$

and the first-order condition is

$$\mu - \lambda 1 = a\Sigma w \tag{13}$$

but λ is nonzero only when the constraint binds (remember Kuhn-Tucker conditions)! We can then solve for λ using w'1 = m.

The constraints bind only when the desired mean-variance portfolio violates it. Thus, we get

$$w_{constrained} = \begin{cases} a^{-1}\Sigma^{-1}\hat{\mu}, \ 1'a^{-1}\Sigma^{-1}\hat{\mu} \leq m \\ a^{-1}\Sigma^{-1}(\hat{\mu} - \frac{a^{-1}1'\Sigma^{-1}\hat{\mu} - m}{a^{-1}1'\Sigma^{-1}1}1), & 1'a^{-1}\Sigma^{-1}\hat{\mu} > m \end{cases}$$
(14)

In particular, the claim about threshold risk aversion follows with

$$a^* = \frac{1'\Sigma^{-1}\hat{\mu}}{m} \tag{15}$$

4. Betting against Beta

Read Frazzini and Pedersen (JFE 2013): Betting against Beta (posted on Moodle).

- 1. Explain the main empirical experiment and the evidence obtained in FP2013.
- 2. Explain the main economic mechanism that FP2013 put forward to explain their empirical findings.
- 3. Read the "Speculative Betas" paper on Moodle and compare its findings with those of Frazzini and Pedersen (JFE 2013). What is the difference?